블로그 이미지
남한산청소년연구회

calendar

  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30        

Notice

2019.03.15 16:55 분류없음



전 세계가 ‘홍역’을 앓고 있다. 홍역 때문에 하루에 약 300명이 사망하고 있다. 일본, 베트남, 필리핀 등에서 홍역 환자가 발생해 수십 명이 사망했다. 또 유럽과 미국에선 유아들이 유난히 많이 홍역에 걸렸다. 국내에서도 지난해 12월부터 최근까지 전국적으로 60명 이상의 홍역 환자가 발생했다. 그 이유는 해외 유입인 것으로 추정된다. 

홍역은 몇몇 국가에서 영영 사라진 질병이라고 간주했다. 그래서 일부 부모는 자식에게 백신을 맞히지 않는다. 집단의 면역력이 강해지면서 자연스레 백신을 멀리하는 사람들이 생기기 시작했다. 특히 1990년대 말, 홍역(Measles)과 볼거리(Mumps), 풍진(Rubella)을 뜻하는 이른바 ‘MMR’ 백신이 자폐증을 유발한다는 논문이 과학 학술지 ‘랜싯’에 실렸다. 당시 태어났던 유아들은 백신에 대한 거부감이 생긴 부모들에 의해 홍역 예방 접종을 받지 못했다. 과학에 대한 불신 혹은 배신은 쉽게 사그라지지 않는다. 세계보건기구(WHO)는 2019년 전 세계 10대 보건 위협 중 하나로 백신 기피 현상을 꼽았다. 

16일은 홍역 백신의 날이다. 홍역은 전염성이 매우 높은 바이러스성 질환이다. 홍역은 특히 면역체계가 약하거나 영양 상태가 좋지 않은 어린이들을 사망이나 장애에 이르게 한다. MMR 백신은 안전하고, 접종자의 90∼95%가 효과를 본다. 홍역 예방 접종을 받지 않으면 90%가량이 홍역에 걸릴 수 있으며 폐렴, 설사, 중이염 등 합병증이 생길 수도 있다. 필자도 어렸을 때 홍역을 앓았다. 그때 정말 좋아했던 짜장면을 먹어도 아무 맛을 느끼지 못했다. 

2017년 11만1000명이 홍역 때문에 사망했다. 대부분 5세 이하 어린이였다. 홍역 백신은 2000년과 2017년 전 세계 2210만 명의 아이를 죽음에서 구했다. 홍역의 첫 증상은 대개 고열이다. 홍역에 감염되면 10∼12일 새 눈이 붉어지고 발진이 생긴다. 홍역의 한자 ‘紅疫’은 좁쌀 같은 붉은 종기들이 생기는 전염병을 뜻한다. 홍역의 영어 단어는 고름, 물집을 뜻하는 중세 독일어 ‘masel’에서 파생됐다. 홍역은 주로 기침과 재채기 및 감염 부위의 직접적인 접촉으로 발생한다. 

WHO는 2018년 전 세계적으로 홍역이 증가한 이유 중 30% 정도는 백신 기피일 것이라고 분석했다. 홍역은 집단 면역의 적정선이 무너지면 금세 확산 가능한 질병이다. 우리나라는 1997년부터 MMR 백신의 두 차례 무료 접종을 실시했다. 몸의 면역체계는 홍역 바이러스를 영원히 기억한다. 

‘백신(vaccine)’이란 말은 영국의 의사인 에드워드 제너(1749∼1823)로부터 유래했다. 그는 소의 발진성 피부질환인 우두(牛痘) 농포에서 고름을 짜 소년의 팔에 직접 주입하는 실험을 하며 천연두 백신을 만들어냈다. 그 당시 천연두는 어린이들을 포함해 인류를 절멸의 벼랑으로 몰았던 무서운 질병이었다. 그런데 지금 백신에 대한 기피가 있듯 당시에도 우두접종법은 받아들여지지 못했다. 그러나 궁극적으로 제너의 방법은 입증되며 결국 많은 사람을 살렸다. 면역학의 아버지였던 제너는 소를 의미하는 라틴어 ‘바카(vacca)’에서 백신이란 말을 고안해냈다. 

최근 과학저널 ‘사이언스’는 지난해 여름 로타 바이러스 백신을 접종한 4개월 된 아이가 장이 말려들어가는 장중첩증과 장이 막히는 장폐색을 일으켰다며 백신 거부 운동의 확산에 대해 서술했다. 이 백신을 맞은 경우 10만 건당 1∼5번 정도 장폐색이 발생하기도 한다.

하지만 이 같은 반응은 로타 바이러스 자체에 의해 감염돼 나타나기도 한다. 더욱이 백신과 부작용의 관계는 입증하기 쉽지 않다. 백신 거부 운동을 펼치는 사람들은 대부분 백신 때문에 자식들이 심하게 다치거나 사망한 경우다. 그들에겐 백신의 부작용이 과학인 셈이다. 

미국 질병통제센터에 따르면 2017년 야외에서 놀던 아이가 사고로 이마가 찢어졌는데 파상풍으로 목숨을 잃을 뻔했다. 예방 접종을 받지 않았기 때문이다. 아이는 집에서 소독하고 상처를 꿰맸으나 6일 후 턱이 움츠러들고 근육이 경련을 일으켜도 통제하기 힘들었다. 아이는 파상풍 및 여타 백신을 맞은 적이 없었다. 그 결과 중환자실을 비롯해 8주간이나 병원 신세를 지며 수억 원의 병원비를 감당해야 했다. 아이의 부모는 이런 일을 겪고도 아이에게 백신 맞히는 것을 거부했다. 

여전히 많은 이들이 부정확한 정보와 감정의 호소 등에 휩싸여 백신 정책에 반감을 표하고 있다. 백신은 분명 과학이지만 백신의 유통과 보급, 기피와 거부엔 인간이 있다. 


https://search.naver.com/search.naver?sm=top_hty&fbm=1&ie=utf8&query=%EA%B7%BC%EA%B1%B0+%EC%97%86%EB%8A%94+%EB%B0%B1%EC%8B%A0+%EA%B1%B0%EB%B6%80%2C+%EC%95%84%EC%9D%B4%EA%B0%80+%EC%9C%84%ED%97%98%EC%97%90+%EC%B2%98%ED%95%A0+%EC%88%98%EB%8F%84

posted by 남한산청소년연구회
2019.02.27 13:52 분류없음


영화 ‘사바하’는 보고도 믿기 힘든 이야기를 다루고 있다. 박 목사(이정재)는 이성적이고 논리적인 반면, 정나한(박정민)은 본능적이고 감각적이다. 정말 무서웠던 건 정나한이 원혼들에게 쫓기는 장면이다. 정나한은 자신이 보고 듣고 만졌던 것들에 충실했다. 내 살에 닿은 것들이 결국 학습과 행위, 기억으로 뭉쳐진다.

그런데 최근 생물학 저널 ‘셀 리포트’에 실린 논문에 따르면 감각을 담당하는 뇌의 신경세포들 역시 학습이 가능했다. 뇌의 촉각 담당 영역이 신경세포의 학습과 기억에도 관여했다. 저차원의 촉각이 고차원적인 기질과 활동의 학습으로 확장된 셈이다.

우리는 단순 업무를 오랫동안 하다가 생활의 달인이 된 사람들을 자주 만난다. 기본적인 자극들이 반복되다 보면 고도의 학습과 기지를 발휘할 수 있다. 대학의 청소부가 어려운 수학 문제를 증명하거나, 비디오 가게 점원이 유명한 영화감독이 되는 게 정말 가능하다는 뜻이다. 일차적인 감각 영역이 초기에 작업의 일부를 감당한다면 정보들의 연결과 연합은 더 빠르고 더 잘 학습될 수 있다. 예를 들어 ‘STOP’ 표지가 빨간색이고 육각형 모양을 갖고 있다는 걸 배우면 실제로 사고 직전에 멈출 수 있다. ‘STOP’이란 단어를 읽어내기 훨씬 전에 말이다. 생존을 위해 이점이 되는 능력이란 걸 뇌가 본능적으로 알고 있는 셈이다.

쥐의 체성(體性) 감각 피질 실험 결과 뇌의 촉각을 관할하는 영역이 학습의 보상 차원에서 중요한 역할을 했다. 체성 감각이란 일명 체감이라고도 한다. 내 피부가 느끼는 뜨거움이나 차가움, 따가움이나 부드러움, 관절의 움직임 혹은 공간적 위치 등을 알아채는 것이다. 체성 감각 피질은 대뇌의 중간 부분을 띠로 이루고 있다. 보상 학습은 뇌가 어떤 한 행동을 즐거운 성과로 결부시키도록 해주는 복잡한 형태의 강화 학습이다. 회사에서 온몸으로 고생한 대가로 월급을 받거나 밤샘 공부를 하며 시험에서 100점을 맞는 게 일종의 보상 학습이다. 

쥐는 어두운 방에서 수염으로 작은 막대기를 감지하도록 훈련받았다. 쥐가 막대기를 발견하면 보상으로 레버를 당겨 물을 먹게 했다. 연구진은 쥐의 수염이 막대기를 건드리면 체성감각 피질이 활성화한다는 걸 예상했고 실제로 그러했다. 그런데 쥐가 보상으로 물을 먹었을 때도 이 부분이 활성화했다. 예상치 못한 반응이었다. 더욱 흥미로운 건 막대기를 치우고 쥐에게 물을 줘도 체성감각 수상돌기가 활성화했다는 점이다. 그렇다면 감각 피질과 보상 학습의 정보 연계는 획득된 것이다. 그러나 수염으로 막대기를 감지하는 훈련을 받지 않은 쥐는 물이라는 보상을 줘도 신경 활동에 아무런 반응이 없었다. 

신경세포는 세포체, 수상돌기, 축삭돌기로 이루어져 있다. 특히 신경세포는 나뭇가지처럼 뻗어나가는 수상돌기를 갖고 있다. 신경세포 하나의 수상돌기는 수천 개에 이르기까지 뻗어나갈 수 있다. 이웃하는 뉴런들과 정보들을 연결하고 송수신 전극을 보내면서 말이다.

보상 학습은 일련의 행동들을 좋은 기분의 감각으로 연결시키는 과정이다. 보상 학습에 대한 이전 연구들은 뇌의 다양한 영역, 즉 복측(배 쪽)피개 영역이나 소뇌 등과 연관돼 있다는 걸 밝혀왔지만 감각 피질은 크게 주목하지 않았다. 감각 정보들은 축삭돌기를 통해 연합피질로 보내진다. 그 속도는 약 시속 160km이다. 연합피질에선 정보를 모으고 체계화한다. 뇌의 가장 정교한 전두엽에서 다음 단계의 과정을 진행하기 위해서다. 예를 들면 레버를 당겨 물을 보상받으려 하려는 것이다. 뇌는 신속하게 정보들의 복잡한 연결을 시도한다.

뇌는 이질적으로 보이는 정보들을 연결하는 데에는 훌륭하지만 연결의 총합이 어디에 남아 있는지는 그동안 알 수 없었다. 체성감각 피질의 수상돌기 층들은 마치 케이크처럼 6개로 구별되는 층을 이룬다. 체성감각 피질의 뉴런들은 5∼6층의 안쪽 깊이 있지만, 이 뉴런들의 수상돌기는 가장 바깥, 높은 쪽까지 뻗어나갔다. 수상돌기들의 복잡한 네트워크는 밀림의 덮개처럼 체성감각 피질의 가장 높은 층을 채우고 있다. 이 수상돌기들을 모니터링하면서 연구진은 쥐를 훈련시켜 간단한 감각 관련 작업을 수행케 했다. 하지만 뇌의 보상 학습의 주동력인 화학물질 도파민이 체성감각 피질에선 발견되지 않았다. 연구진은 도파민과 비슷한 어떤 신경조절물질이 관여하고 있는지 알아가고자 한다.

주위에 단순하고 감각적인 작업에 몰두하는 사람이 있다면 무시하지 말지어다. 그들의 뇌 속에선 감각의 신경세포들이 언젠가 창의적인 싹을 틔우기 위해 부지런히 학습하고 있을지 모른다.


posted by 남한산청소년연구회
2019.01.02 19:27 분류없음

영화 <아쿠아맨>(제임스 완 감독)이 인기다. 그 이유는 아무래도 주제 의식 때문일 것이다. <아쿠아맨>은 잡종을 다룬다. 육지와 바다를 잇는 잡종이 왕을 넘어서 영웅이 된다는 얘기는 흥미롭다. 잡종은 두 세계의 다리 역할을 한다. 그렇다면 주인공인 잡종 '아쿠아맨'은 어떻게 탄생했을까? 영화 이야기를 따르자면, 아틀란티스인들 역시 육지 위에서 살던 육지인이었다. 그러다 오만에 의해 자멸하면서 바다라는 이질적인 지역으로 갈라져갔다. 바다에 적응한 아틀란티스인이 우연히 육지의 인간과 사랑을 나누면서 잡종 ‘아쿠아맨’이 탄생한 것이다.


자연에서 새로운 종은 어떻게 생겨날까? 종의 분화는 이지역성(異地域性)에서 가장 극명하게 나타난다. 가장 단순하게 생각해 동물 또는 식물 개체군이 강이나 산맥 등에서 지리적으로 격리되면 가능하다. 분리된 두 그룹은 시간이 지남에 따라 격리된 환경에 적응하면서 변이된 유전적 차이를 축적한다. 마치 아틀란티스인과 육지인처럼 말이다. 결국 두 그룹의 DNA는 매우 달라져 두 개체군은 구분되는 종으로 여겨진다. 하지만 실제론 너무나 복잡하고 지난한 과정이 필요하다. 단순히 지리적 격리가 일어났다고 해서 생식적 격리가 일어났다고 볼 수는 없으며, 실제로는 다양한 형태의 자연선택을 포함하는 힘들이 종 분화를 완성시킨다.


최근 <분자생태학>에 공개된 논문에서 연구진은 짖는 원숭이(Howler monkey) 연구로 새로운 종 형성의 기작을 조사했다. 두 종의 짖는 원숭이의 상호교배 연구를 통해 새로운 종의 진화를 촉진하는 힘이 무엇인지 분석한 것이다. 연구결과를 보면 자연 선택의 이중성을 확인할 수 있다. 종의 분화를 위해 생식적 격리를 할 때, 처음엔 다른 지역으로 막 퍼져나갔다가 나중엔 같은 지역에서 분기적 선택(divergent selection)을 한 것이다. 


종 분화는 개체군들이 서로 갈라져 생식적으로 각각 분리될 때 나타난다. 자연 선택은 이 과정에서 흔히 중요한 역할을 하는 것으로 간주되며, 생식적 격리가 종종 타 지역에 적응함으로써 분기되는 부산물로서만 여겨졌다. 하지만 동일 지역의 이종교배를 통해서도 종이 분화하고 있다는 게 밝혀졌다. 영화 속 아틀란티스인과 육지인은 아쿠아맨이 태어나기 전까지 서로 사랑을 나눌 수 없었다. 영화 초반에 보면, 아틀란티스 공주가 육지인 남자를 내팽개치는 장면이 나온다. 하지만 해안가라는 동일 지역에서 공주와 인간 남자는 사랑하게 된다. 


생식적 격리는 그 어떤 이종교배에도 불구하고, 한 종의 고유성을 유지하는 순수 종의 개념과 수단으로 작용한다. 하지만 현대적 개념에서의 종이라는 건 완전한 생식적 격리를 요구하진 않는다. 자연에서 실제로 이종교배는 꽤 발견되었다. 20년에 걸친 DNA 샘플 분석 연구로 밝혀진 바에 따르면, 망토 짖는 원숭이와 검은 짖는 원숭이는 상호교배 하면서 잡종의 자손을 낳았다. 이 두 집단 간에 이종교배가 일어났다는 사실은 종의 고유성과 관련한 생식적 격리는 불완전하다는 걸 의미한다.

 

영화의 주인공인 아쿠아맨은 바다와 육지의 잡종으로 태어났다. 사진 = 워너 브러더스 코리아(주)

 

완전한 생식적 격리는 불가능하다

망토 짓는 원숭이와 검은 짓는 원숭이는 약 3백만 년 전에 갈라졌다. 그러다 비교적 최근(1만 년 전 이내로 추측됨)까지 멕시코 남동부 타바스코주의 약 12마일 폭의 ‘하이브리드 존’에서 다시 만날 때까지 따로 살았다. 그간 하나의 종이라는 것은 다른 종으로부터 생식적으로 유리된 채, 실질적으로 혹은 잠재적으로 상호 교배하는 집단으로 규정돼 왔다. 우리나라 섬진강 고유의 민물고기인 줄종개가 동진강에 서식하던 점줄종개와 잡종을 이루어 잡종 무리가 번성한 사례도 있다. 줄종개와 점줄종개는 330만 년 전 공통 조상으로부터 분화해 다른 종이 되었던 것으로 추산된다. 


지금껏 진화 생물학자들은 두 집단 간 유전자 섞임의 장벽을 강화함으로써 자연 선택의 압력이 완성된다고 믿었다. 즉, 두 집단을 완전한 생식적 격리로 몰아넣는 것이다. 자연 선택은 성공적으로 번식하는 유기체를 선호하는 편이다. 번식하지 못하면 외면 받는다. 따라서 자연 선택은 잡종에 반한다. 왜냐하면 잡종은 번식하기 전에 자주 죽거나 번식 자체가 불가능하기 때문이다.

자연 선택은 부적합 잡종의 형성을 막으려고 한다. 그 방법 중 하나는 두 유기체 간 유전적 차이를 점진적으로 늘여가는 것이다. 다시 말해 검은 짖는 원숭이와 망토 짖는 원숭이의 유전적 차이를 늘리는 것이다. 이로써 두 종의 원숭이는 짝짓기 하거나 잡종의 자손을 퍼뜨리는 게 어려워질 수 있다. 잡종의 출현을 막는 동안 자연 선택은 유전적 차이를 늘여감으로써 생식적 격리를 강화한다. 이 단계를 강화(reinforcement)라고 부른다. 이 강화 개념은 100년이나 지속되었지만 실증은 부족했다.

연구진들은 유전 데이터에서 패턴을 확인했다. 그 결과 이종교배가 종들 간에 유전적 차이를 강화함으로써 종 분화 단계를 완성하는 데 직접적인 역할을 했음을 발견했다. 연구진들은 검증이 부족해 논란의 여지가 있는 강화 메커니즘을 포함해, 종들 간 차이를 유도하는 자연 선택의 신호를 발견했다. 이 결과는 주목할 만했다. 왜냐하면 그간 강화에 대한 경험적 증거, 특히 유전적 증거는 극히 드물기 때문이다. 연구진들은 자연적인 영장류 하이브리드 존을 활용하여 생식 격리와 관련된 장소의 동지역성(同地域性) 혹은 이지역성(異地域性)에 대한 자연 선택의 게놈 서열을 관찰했다.

강화 개념이 있는지 확인하기 위해 연구진들은 타바스코 하이브리드 존에 사는 검은 짖는 원숭이와 망토 짖는 원숭이의 DNA를 하이브리드 존과 멀리 떨어진 곳에 있는 검은 짖는 원숭이와 망토 짖는 원숭이의 DNA와 비교했다. 다시 말해 생식적 격리와 관련 있을 거라 여겨지는 유전자 표지를 비교했다. 만약 강화 개념이 실제로 작동하고 있어서, 자연선택이 요구하는 것처럼 이종교배를 좌절시키고 생식적 격리를 강화하는 쪽으로 작동하려면, 하이브리드 존의 두 종 간 유전적 차이는 하이브리드 존 바깥의 양쪽에 각각 살고 있는 두 종 간 유전적 차이보다 커야 한다. 

자연 선택에 반하여 잡종 발생 가능성이 큰 지역이기에 종 간 생식적 격리가 강화되려면 더 큰 유전적 차이가 필요한 것이다. 무엇보다 하이브리드 존에서 태어난 종들이 생식적 격리를 통해 새로운 종으로 분기되고 있기 때문에 짖는 원숭이 두 종이 공존하고 때론 교잡을 통해 상호 교배하는 하이브리드 존에서 강화는 종 분화를 완성하는 데 도움을 주는 것으로 볼 수 있다.

 

멕시코 타바스코의 젊은 수컷 짓는 원숭이. 생김새는 검은 짓는 원숭이처럼 보이지만, 이 원숭이는 망토 짓는 원숭이와 검은 짓는 원숭이의 잡종인 듯하다.

사진 = https://phys.org/news/2018-12-howler-monkey-mechanisms-species-formation.html

 

이종교배를 통해서도 가능한 종의 분화


망토 짖는 원숭이와 검은 짖는 원숭이는 행동, 외모, 그들이 보유하고 있는 염색체 수 등 많은 부분에서 다르다. 심지어 서식하고 있는 곳이 다르다. 하지만 멕시코 남동부의 타바스코 주에선 공존하고 상호교배 하면서 하이브리드 존을 만들었다. 연구진들은 망토 짓는 원숭이와 검정 짓는 원숭이 각각의 조상을 추적하기 위해 미토콘드리아와 핵 DNA 둘 다로부터, 유전자 표지(genetic markers)의 구분되는 형태들을 분석했다. 그 결과, 형태만으로 잡종을 식별하는 건 어렵다고 결론지었다. 따라서 인간의 화석 기록에서도 이종교배의 가능성이 간과되었을 수 있다.

짖는 원숭이가 인간 진화의 측면에서 이종교배의 측면에서 어떤 의미가 있을까? 초기 인류가 다른 종들과 이종교배하여 혼종의 자손을 낳았을까? 최근 유전 연구에 따르면, 네안데르탈인들이 수만 년 전에 중동 지역에서 해부학적으로 현대 인류의 종들과 상호교배해서 유전자 풀에 기여했을 가능성이 있다고 한다. 하지만 연구 결과는 일반적으로 받아들여지지 않았다. 화석의 기록은 이종교배를 증명하는 데 도움이 되지 못했다.


이종교배는 유전적으로 구별되는 개체군들 간 상호교배의 자손 번식으로 정의된다. 앞으로 ▲ 이종교배의 단계 ▲ 잡종 개체군들의 형태학적 표현을 좌우하는 요소 ▲ 종들 간 생식적 격리 정도를 더 알아가다 보면 인류의 진짜 민낯이 드러날지도 모르겠다.


posted by 남한산청소년연구회
prev 1 2 3 4 5 6 7 ··· 26 next